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1
ADAPTIVE PARSER-CENTRIC TEXT
NORMALIZATION

BACKGROUND

Embodiments of the present invention relate to text nor-
malization, and more specifically, to a customizable text
normalization framework providing for domain adaptability
through modular replacement generators.

BRIEF SUMMARY

According to one embodiment of the present invention, a
method of and computer program product for text normal-
ization are provided. An input sequence comprising a plu-
rality of tokens is received. A plurality of generators is
applied to the input sequence to generate a set of candidate
replacements of the tokens of the sequence. A plurality of
subsets of the set of candidate replacements is determined
such that the candidate replacements of each subset are
syntactically consistent. A probability is determined for each
of'the subsets. A subset of the plurality of subsets having the
highest probability is selected. Each candidate replacement
of the selected subset is applied to the input sequence to
generate an output sequence. The output sequence is out-
putted.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts an exemplary set of replacement generators
according to an embodiment of the present disclosure.

FIG. 2 depicts a normalization graph according to an
embodiment of the present disclosure.

FIG. 3 depicts exemplary performance metrics according
to an embodiment of the present disclosure.

FIG. 4 depicts a computing node according to an embodi-
ment of the present invention.

DETAILED DESCRIPTION

Text normalization is the process of transforming infor-
mal or malformed writing into a standard form. For
example, transforming transcribed slang into standard Eng-
lish poses a text normalization problem. Text normalization
may provide a preprocessing step in text-to-speech, speech
recognition, named entity recognition, information extrac-
tion, parsing, and machine translation. In general, text
normalization may be applied in computing tasks that
involve natural language in order to provide a standardized
input form.

Text normalization may include mapping all out-of-vo-
cabulary non-standard word tokens to their in-vocabulary
standard forms. However, the generalized text normalization
task has a broader scope, encompassing the conversion of
input text to a grammatically correct phrase in addition to
replacement of non-standard tokens. Correction of grammar
may include modifying punctuation and capitalization as
well as adding, removing and reordering words.

Styles of informal text may vary between domains. For
example, the style of writing appearing on Twitter is distinct
from the style of text drawn from a transcript of a spoken
conversation. An SMS message has its own stylistic con-
ventions, which are in turn distinct from those of Twitter. A
text normalization approach may be tailored to a particular
domain, and trained using data from that domain. However,
while tailoring to a particular domain may increase perfor-
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mance within that domain, it may also reduce the adaptabil-
ity of the approach to other domains.

Accordingly, the present disclosure provides a customiz-
able text normalization framework. The framework provides
for domain adaptability through modular replacement gen-
erators, which produce fully grammatical sentences. The
introduction of a small set of domain-specific generators
allows the framework to outperform other approaches,
including word-to-word normalization. The flexibility of the
model also allows it to produce fully grammatical sentences,
which is beyond the capability of a word-to-word normal-
ization approach.

The framework of the present disclosure builds a statis-
tical model over a series of heuristic replacement generators.
By doing so, it allows a designer to quickly adapt a generic
model to a new domain with the inclusion of a small set of
domain-specific generators.

As noted above, text normalization may be applied to
provide clean text for downstream processing applications,
such as syntactic parsing. Thus, there is a need for evaluation
metrics that capture the effect of text normalization on these
downstream processing applications. Evaluating text nor-
malization in terms of word error rate or BLEU (Bilingual
Evaluation Understudy) score may not provide an accurate
evaluation of performance on a parsing task, where a well-
placed punctuation mark may provide more substantial
improvements than changing a non-standard word form.

Accordingly, an evaluation metric is provided that ties
normalization performance directly to the performance of a
downstream dependency parser. This evaluation metric
allows for a deeper understanding of how certain normal-
ization actions affect the output of the parser.

In some embodiments, the original input text (un-normal-
ized) may be represented as a sequence X=X, X,, . . . , X,, of
tokens x,. An exemplary input, referred to further below, is
the sequence x=Ay, woudent, of; see, "em, (in which com-
mas have been omitted for readability).

In embodiments of the present disclosure, a series of
replacement generators are applied to the input sequence x.
A replacement generator is a function that takes the
sequence x as an input, and produces a collection of replace-
ments. A replacement is generally of the form “replace
tokens x,, . . . , X;, with s.” More precisely, a replacement

is a triple (ij, s), where 1=i=j=n+1 and s is a sequence of
tokens. In cases where i=j, the sequence s is inserted before
x,. In cases where s is empty, x,, . . . , X, , are deleted. With
reference to the above exemplary input sequence, the

replacement (2,3, would not) replaces x,~woudent with
would not; (1,2, Ay) replaces x, with itself (thus resulting
in no change to input sequence x); { 1,2, €) (where € is the

empty sequence) deletes x,; and { 6,6, .) inserts a period at
the end of sequence x. Replacement generators may be
provided that are generic (cross-domain) or domain-specific,
allowing domain customization.

The use of replacement generators allows for great flex-
ibility. Each generator may be viewed as a black box,
allowing replacements that are created heuristically, statis-
tically, or by external tools to be incorporated within the
same framework as one another.

An exemplary set of generators is depicted in FIG. 1.
Generator 101 (keep original) transforms an input to itself—
resulting in no change. Generator 102 (edit distance) trans-
forms an input into a dictionary word that has a minimal edit
distance from the input. For example, mapping “bac” to
“back” by inserting the missing “k”. A variety of methods
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are known for calculating an edit distance, including Lev-
enshtein distance, Hamming distance, Damerau-Leven-
shtein distance, and Jaro-Winkler distance. The edit distance
generator may be backed by a variety of dictionaries corre-
sponding to general language or domain specific language.
Generator 103 (lowercase) transforms an input string into its
lower case equivalent. Generator 104 (capitalize) capitalizes
an input string. Generator 105 (spelling) performs a spell
check on the input to determine the output. Various genera-
tors may use external spell checker services, or any spell
checking algorithm known in the art. Generator 106 (con-
traction) expands a contraction into a complete phrase. For
example, “wouldn’t” is transformed into “would not”. The
contraction generator may be backed by a general dictionary
of contractions, or a domain specific dictionary. Generator
107 (slang language) transforms a slang phrase into a
standard phrase. The slang language generator may be
backed by a general dictionary or a domain specific diction-
ary reflecting common usage in a particular medium or
region. Generator 108 (insert punctuation) takes the empty
sequence (€), and inserts a punctuation mark. Generator 109
(duplicated punctuation) takes multiple punctuation marks
in sequence, and replaces them with a single punctuation
mark. For example, “!?”” may be replaced with “!”’. Genera-
tor 110 (delete filler) removes words, replacing them with
the empty sequence (€). For example, the abbreviation
“lmao” may not be considered to have any informational
value in certain domains, and thus should be removed.

Taken together, generators 101-110 cover a variety of
normalization behavior, from changing non-standard word
forms to inserting and deleting tokens. These particular
generators are presented as examples, and a variety of
additional generators may be included in a given embodi-
ment. As an example of a specialized generator, a Twitter-
specific generator may focus on the Twitter-specific notions
of hashtags (#), ats (@), and retweets (RT). Generators may
be implemented that allow for either the initial symbol or the
entire token to be deleted (e.g., @Hertz to Hertz, @Hertz to
€). In various embodiments of the present disclosure, gen-
erators may be specialized to SMS, Twitter, Call-center
transcripts, or other any other communications medium. A
given domain-adapted embodiment of the framework may
include a combination of generic and domain specific gen-
erators.

Domain transfer according to the present disclosure is
possible with only a small amount of effort. A relatively
modest set of additional replacement generators included in
each data set allow each domain-specific embodiment to
significantly outperform the generic approach.

The flexibility of the model allows for the generation of
as many or as few candidates as desired. For instance, the
framework may be applied with generators that proposed
every word for every token. This avoids the potential
problem that reliance on largely heuristically produced
generators could result in poor coverage. Second, the reli-
ance on a small number of generators allows the system to
consider n-to-m transitions that may be too combinatorially
expensive if all possible tokens were considered.

With reference to FIG. 2, a normalization graph according
to an exemplary embodiment of the present disclosure is
provided. Graph 200 comprises a plurality of nodes
201 ... 211. Each node lies along a path from start node 201
to end node 211. Each node has an associated replacement,
depicted in the notation discussed above.

Given the input x and the set of replacements produced by
the generators, a unique variable X, is associated with each
replacement r. The variable X, is boolean. Where X, is true,
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the replacement r takes place in producing the output
sequence. Dependencies among variables may be deter-
mined as follows. To determine syntactic consistency among

truth assignments, let r,=(i,, j,, s,) and r,=(i,, j., 5,) be
two replacements. Replacements r;, and r, are considered
locally consistent if the intervals [i,,j,) and [i,, j,) are
disjoint. Locally consistent pairs of replacements can fire
simultaneously (disregarding any other replacements). Two
insertions are not allowed at the same position, therefore
[1,,j;) and [is, j,) are excluded from the definition of local
consistency where i,=j,=i,=j,. Where r, and r, are locally
consistent and j,=i,, r, is a consistent follower of r,.

An assignment o to variables X, is sound if every two
replacements r; and r, a(r, )=a(r,)=true are locally consis-
tent. An assignment o is complete if every token of x is
captured by at least one replacement r with a(r)=true.
Finally, a is legal if it is sound and complete. The output
(normalized sequence) defined by a legal assignment is the
concatenation of the strings s of the true replacement. For
example, in FIG. 2, if bold nodes 202 . . . 206 correspond to
true values, the output would be I would not have seen them.

The graphs of FIG. 2 depicts two types of interdependen-
cies among replacements. First, semantic dependencies cap-
ture the correlation among replacements. For example,
replacing of with have, makes it more likely that the next see
token be replaced with seen. In some embodiments, seman-
tic dependencies are restricted to pairs that consist of a
replacement and a consistent follower thereof. A syntactic
dependency is due to the fact that an assignment is required
to be legal.

As depicted in FIG. 2, dependencies may be modeled as
a directed graph. Semantic dependencies are modeled by an
edge from X, to X,' whenever r' is a consistent follower of
r. In addition, start node 201 and end node 211 are included
in graph 200, with an edge from start node 101 to each
variable that corresponds to a prefix of X, and an edge from
each variable that corresponds to a suffix of x to end node
211.

In other embodiments, dependencies may be modeled
using other graphs, such as an undirected graph using
Conditional Random Field. However, modeling the depen-
dencies in a directed graph as discussed above provides that
the legal assignments are in one-to-one correspondence with
the paths from start to end.

The probability of an assignment is defined using the
log-linear model formulation. The conditional probability of
an assignment o given an input sequence x is defined in
Equation 1, where L(a, x) is 1 if a is legal and 0 otherwise,
Z(x) is the partition function, ¢,X, Y, x) is a real valued
feature function that fires when both X and Y are true, and
0 is the weight vector. The legal function L(a, x) ensures that
only legal assignments have a positive probability.

Equation 1
pla|x) =

1
7 1 x)]_I exp(zj: 0;p;(X, Y, x)]

X-Y

According to embodiments of the present disclosure, in an
inference step the output sequence with the highest prob-
ability is selected given the input sequence (i.e., maximum
a posteriori probability (MAP) inference). In particular, the
highest probability output sequence is given by an assign-
ment a*=arg max,p(alx). While exact inference is gener-
ally hard on general graph models, in the above model,
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inference is equivalent to finding the longest path in a
weighted and acyclic directed graph.

The directed graph described above is acyclic (hence, a
DAG). In particular, given any positive and/or negative
weights on the edges, there exists a longest path (i.e., there
are no positive cycles) between every pair of nodes. A real
value 2.8,0,(X, Y, x) may then be put as the weight for the
edge X—Y. As noted above, a legal assignment a corre-
sponds to a path from start to end. It may be shown that the
summed weights of any path from start to end is equal to log
p(alx)+log Z(x). In particular, a longer path corresponds to
an assignment with greater probability. Therefore, the MAP
inference may be solved for the above model by finding the
weighted longest path in the directed acyclic graph, which is
a tractable problem.

In some embodiments of the present disclosure, edge
weights are determined through a machine learning algo-
rithm. In general, the items in a training set are pairs (X;,
0.2 for i=1, . . ., n where 0,2°? is a gold-standard
assignment with respect to x,. In some embodiments, ¢, 2%
is computed from a manually normalized sequence using a
dynamic programming algorithm. Learning may be done via
maximum likelihood estimation per Equation 2. The result
of the partial derivative is given in Equation 3, where @ (a,
X)=Zy. X, Y, x), i.e., the sum of feature j along the path
of a. The expected value of the sum of feature j, with respect
to the probability of assignment with the current weight
vector is given by E, g, . 0)P(0,.X,).

L(0) = logl_[ p(w; _ a/‘gold |x‘-, 0) Equation 2

Z ((Dj(oz}@ld, x;) ~ Epapr®;ei x;)) Equation 3

i

Due to the inclusion of n-to-m transitions and the syn-
tactic dependencies, naive computation of E,,, . 6@ (ct;,x,)
requires enumerating all legal assignments. A less compu-
tationally intensive perceptron-style algorithm may be used
instead. In such an approach, instead of computing the
expectation, ®(o,* x,) is computed, where o,* is the most
probable assignment generated using the current weight
vector. The resulting approximated derivative is given in
Equation 4.

Z ((Dj(oz}wd, x;) — 0, x;)) Equation 4

i

According to some embodiments of the present disclo-
sure, the perceptron-style learning applies the following two
steps iteratively: (1) Generate the most probable sequence
within the current weights; and (2) Update the weights by
comparing the path generated in the previous step to the gold
standard path.

In another aspect of the present disclosure, systems and
methods are provided for evaluating the performance of a
normalizer based on how it effects the performance of
downstream applications. As observed above, evaluation
metrics based on word-to-word mapping may not be suitable
to evaluate downstream performance. First, different words
are unlikely to have equal weights, contrary to the assump-
tion inherent in word-to-word mapping. Second, word-to-
word metrics do not take into account potentially important
non-word information such as punctuation or capitalization.
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In addition, word-to-word metrics do not take into account
other aspects that may affect downstream performance, such
as word reordering.

An evaluation metric that directly equates normalization
performance with the performance of a common down-
stream application—dependency parsing is provided. First,
gold standard normalized data is created by manually nor-
malizing sentences to their full grammatically correct form.
In addition to the word-to-word mapping performed in
typical normalization gold standard generation, this annota-
tion procedure includes all actions necessary to make the
sentence grammatical, such as word reordering, modifying
capitalization, and removing emoticons. A dependency
parser is then run on the gold standard normalized data to
produce gold standard parses. Although the parser could still
produce mistakes on the grammatical sentences, this pro-
vides a realistic benchmark for comparison, as it represents
an upper bound on the possible performance of the parser,
and avoids an expensive second round of manual annotation.

To compare the parses produced over automatically nor-
malized data to the gold standard, an analysis is performed
of the subjects, verbs, and objects (SVO) identified in each
parse. The metric in Equations 5 and 6 is based on the
identified subjects and objects in those parses. The set of
identified subjects and objects are denoted SO whereas
S02° denotes the set of subjects and objects identified
when parsing the gold standard normalization.

o IS0 N SO%H| Equation 5
precisiong, = ol
, IS0 N S0%H| Equation 6
recatlso = ————————
|SOlgold

Referring to FIG. 3, subjects, verbs and objects identified
on example test/gold text are shown with their correspond-
ing metric scores. The metrics for precision, and recall,
where the set V of identified verbs is compared to V& of
those found in the gold-standard normalization, are defined
as for the SO metrics above.

In an exemplary embodiment of the disclosed framework,
although real valued features are supported, all features are
binary. The feature set pulls information from several dif-
ferent sources. Information from n-grams is used to compare
the candidate normalization to the original tokens, and to
compare candidate capitalizations. N-gram information may
be produced from sources such as the Corpus of Contem-
porary English (COCA). In this embodiment, part-of-speech
information is used to produce features that discourage
certain behavior, such as the deletion of noun phrases.
Part-of-speech information over the original raw text may ge
generated using an external part-of-speech tagger. The part
of speech information obtained this way may be noisy, but
if this leads to unreliable features then the learning algorithm
will weight them accordingly. Positional information is used
primarily to handle capitalization and punctuation insertion,
for example, by incorporating features for capitalized words
after stop punctuation or the insertion of stop punctuation at
the end of the sentence. Finally, this exemplary embodiment
includes binary features that indicate which generator
spawned the replacement.

Referring now to FIG. 4, a schematic of an example of a
computing node according to an embodiment of the present
invention is provided. Computing node 10 is only one
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example of a suitable computing node and is not intended to
suggest any limitation as to the scope of use or functionality
of embodiments of the invention described herein. Regard-
less, computing node 10 is capable of being implemented
and/or performing any of the functionality set forth herein-
above.

In computing node 10 there is a computer system/server
12, which is operational with numerous other general pur-
pose or special purpose computing system environments or
configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, handheld or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

As shown in FIG. 4, computer system/server 12 in com-
puting node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter systeny/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “floppy disk™), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
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other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as a keyboard, a
pointing device, a display 24, etc.; one or more devices that
enable a user to interact with computer system/server 12;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/0O) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, device drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
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tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
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processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A method comprising:

receiving at a computing node an input sequence com-

prising a plurality of tokens;

applying by a processor of the computing node a plurality

of domain-specific generators to the input sequence to
generate a set of candidate replacements of the tokens
of the input sequence;
creating in a memory of the computing node a directed
graph comprising a plurality of nodes and a plurality of
edges, each node having an associated candidate
replacement of the set of candidate replacements, and
each edge connecting a first node to a second node, the
second node being associated with a consistent fol-
lower of the candidate replacement associated with the
first node, and creating the plurality of edges compris-
ing determining syntactic consistency between each
pair of the set of candidate replacements;

determining by the processor a plurality of paths in the
directed graph, each of the plurality of paths compris-
ing at least one of the plurality of edges;

determining by the processor a score for each of the paths;

selecting by the processor a path of the plurality of paths

having the highest score;

applying by the processor each candidate replacement of

the selected path to the input sequence to generate a
normalized output sequence; and

evaluating a correctness of the normalized output

sequence by parsing the normalized output sequence to
obtain a parse result and comparing the parse result
with a gold standard that is obtained by parsing a
manually normalized sequence.
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2. The method of claim 1, wherein the graph is directed
and acyclic.

3. The method of claim 1, wherein determining the score
for each of the paths comprises aggregating a plurality of
edge weights along each path.

4. The method of claim 3, further comprising:

determining edge weights from a training data set, the

training data set comprising a plurality of training input
sequences, each training input sequence associated
with a normalized sequence.

5. The method of claim 4, wherein determining edge
weights comprises performing maximum likelihood estima-
tion.

6. The method of claim 4, wherein determining edge
weights comprises iteratively generating a sequence with a
highest score based on the edge weights and updating the
edge weights by comparing the sequence with the highest
score to the normalized sequence.

7. The method of claim 1, further comprising:

comparing the normalized output sequence to a training

sequence to determine a number of subjects, verbs, and
objects overlapping between the training sequence and
the normalized output sequence.

8. The method of claim 1, wherein one of the plurality of
generators determines a candidate replacement by determin-
ing a minimum edit distance from one of the plurality of
input tokens.

9. The method of claim 1, wherein one of the plurality of
generators determines a candidate replacement by changing
a case of one of the plurality of input tokens.

10. The method of claim 1, wherein one of the plurality
of generators determines a candidate replacement by cor-
recting the spelling of one of the plurality of input tokens.

11. The method of claim 1, wherein one of the plurality of
generators determines a candidate replacement by expand-
ing a contraction of one of the plurality of input tokens.

12. The method of claim 1, wherein one of the plurality
of generators determines a candidate replacement by looking
up one of the plurality of input tokens in a dictionary.

13. The method of claim 1, wherein the score comprises
a probability.

14. A computer program product for text normalization,
the computer program product comprising a computer read-
able storage medium having program code embodied there-
with, the program code executable by a processor to:

receive at a computing node an input sequence compris-

ing a plurality of tokens;

apply by a processor of the computing node a plurality of

generators to the input sequence to generate a set of
candidate replacements of the tokens of the input
sequence;
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create in a memory of the computing node a directed
graph comprising a plurality of nodes and a plurality of
edges, each node having an associated candidate
replacement of the set of candidate replacements, and
each edge connecting a first node to a second node, the
second node being associated with a consistent fol-
lower of the candidate replacement associated with the
first node, and creating the plurality of edges compris-
ing determining syntactic consistency between each
pair of the set of candidate replacements;

determine by the processor a plurality of paths in the

directed graph, each of the plurality of paths compris-
ing at least one of the plurality of edges;

determine by the processor a score for each of the paths;

select by the processor a path of the plurality of paths

having the highest score;

apply by the processor each candidate replacement of the

selected path to the input sequence to generate a
normalized output sequence; and

evaluate a correctness of the normalized output sequence

by parsing the normalized output sequence to obtain a
parse result and comparing the parse result with a gold
standard that is obtained by parsing a manually nor-
malized sequence.

15. The computer program product of claim 14, wherein
the graph is directed and acyclic.

16. The computer program product of claim 14, wherein
determining the score for each of the paths comprises
aggregating a plurality of edge weights along each path.

17. The computer program product of claim 16, the
program code being further executable to:

determining edge weights from a training data set, the

training data set comprising a plurality of training input
sequences, each training input sequence associated
with a normalized sequence.

18. The computer program product of claim 17, wherein
determining edge weights comprises performing maximum
likelihood estimation.

19. The computer program product of claim 17, wherein
determining edge weights comprises iteratively generating a
sequence with a highest score based on the edge weights and
updating the edge weights by comparing the sequence with
the highest score to the normalized sequence.

20. The computer program product of claim 17, the
program code being further executable to:

comparing the normalized output sequence to a training

sequence to determine a number of subjects, verbs, and
objects overlapping between the training sequence and
the normalized output sequence.
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